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THE EVOLVING USER NEED FROM RECSYS

• Why people come to the social and e-commerce platforms nowadays --  

Ø information seeking and discovery (i.e. search & recommendation)
Ø complete user tasks (i.e. buy merchandise, get updates, learn about something …)

• What people need from Recsys in these platforms nowadays:
Ø better coping with information overload 
Ø provide explanation and reasoning to shape decisions
Ø support action taking



THE EVOLVING USER NEED FROM RECSYS

• Why people need Recsys in these platforms (THE WHY):

Ø better coping with information overload 

Ø provide explanation and reasoning to shape decisions

Ø support action taking

• It entails an upgrade from Personalized Suggestion to Personalized Assistance, however:

Ø growing level of ambiguity in new problem definitions and complexity to develop the right capabilities

Ø despite GenAI’s seeming vast potential, what are the opportunity areas and how to facilitate the paradigm shift?

                                              ↑                                          ↑
                               two contributions of this tutorial:   THE WHAT           +          THE HOW



A QUICK NOTE ON THE EVOLVING SOCIETAL NEED FROM RECSYS (WILL NOT 
BE COVERED IN THIS TUTORIAL)

• Societal roles of Recsys nowadays:
Ø Connecting creator to audiences (supply to demand)

Ø Shaping content creation (supply strategy)

Ø Impacting platform / creator economics (market dynamics) 

• Similarly, GenAI opens new opportunity areas:
Ø AI-assisted marketing analysis and monetization strategy, content and campaign creation …

Ø Cross-platform integration

• Also, new challenges arise:
Ø Understanding the redistributed competition landscape with AI and AI-guided strategy as the new players  

Ø The ethics framework need a significant upgrade to ensure the welfares of all parties  
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To Better Understand how to Support the Evolving User need, Let’s 
Breaking Down Industry Recsys by Functional Pillars

ØFeature: raveling the characteristics of the 
user / item, based on which the matching and 
predictions algorithms can be developed.

Ø Activity: serving as labels and / or signals 
(e.g. in sequence recommendation) for 
capturing user explicit / implicit preferences.

Ø Context: consisting of situational features 
that affects user preference and behavior, but 
are not part of the user and item 
characteristics.

Ø Display:  the design of visual presentation of 
selected information to the user.

Ø Interface: the interactive elements and 
concepts (including feedback and task 
completion mechanisms) and navigation 
logics of the system.

Ø Serving: systematically delivering all the 
above elements and functionalities to users.  
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General Recsys Contextual Recsys Recsys w. display optimization

Cross-domain Recsys ???

To Better Understand how to Support the Evolving User need, Let’s 
Check Out the Evolvement of Recsys Design Patterns



Activity Context Display Interface× × ×Feature ×

• Numerical
• Categorical 

(inc. ID)
• Pairwise
• Hidden
• Image etc.
• …

• Matrix
• Set
• Graph
• Sequence
• Review
• Multi-turn Q&A
• …

• Latent factor methods
• GNN methods
• Sequential methods
• Markov Chain methods
• Multi-task / meta / online methods 
• …

• Sequence encoder
• Natural language encoder
• Next item prediction
• Conversational
• …

Input

Method

NLP 
application

Output
• Ranked list
• Top-1
• Bundled
• Grouped
• …

Well-understood as the primary focus area in pre-GenAI era

× Serving



• Contextual filtering
• Contextual modeling
• Exploration / Exploitation (RL)
• …

Input

Method

NLP 
application

Output

• Static <> Dynamic

• Explicit <> Latent

• Partial <> Complete

• Context-driven query / search
• Text encoding (e.g. review)
• …

Know contexts are important, but less focused in pre-GenAI era

……

Activity Context Display Interface× × ×Feature × × Serving



Input

Method

NLP 
application

Output

Less understood, less explored in pre-GenAI era (but can significantly impact all 
sorts of user behaviors!)

• Non-textual, non-interactive (e.g.  click, purchase)
• …

• Natural language template hydrated with knowledge 
metadata (e.g. explanation )

• …

…… ……

• Knowledge extraction / standardization
• …

Activity Context Display Interface× × ×Feature × × Serving



Input

Method

NLP 
application

Output

Focus on optimizing customized (small) models in pre-GenAI era

• Standard numerical 
features

• Embedded non-
numerical features

• …

…… ……

Activity Context Display Interface× × ×Feature × × Serving

• Model compression
• Quantization
• Distillation
• Compilation (GPU-

based serving)
• Containerization
• API-based serving
• Adaptive batching
• Async processing
• Automated scaling
• …

• Structured output
• …

……



Ø Strong personalized filtering and prediction of  
the available information in existing corpus 
when abundant structured feature and data 
are available

Ø Exhibiting some level of contextual awareness

Ø Displaying templated knowledge-based 
justification (persuasion) and reasoning to 
accompany raw contents

Ø Focusing on passive preference elicitation 
interface design concepts (e.g. standardized, 
non-verbal interaction) with limited user-
system interactivity 

To summarize, existing industrial Recsys:

Ø Performance gap when structured feature and 
data is scarce (e.g. cold start, multi-modal)

Ø Lack interpreting nuanced natural language and 
other complex contexts for rapid adaptation to 
different scenarios

Ø No on-demand creation of complex outputs for 
enriched and personalized display of 
explanation, reasoning, and coherent content 
repurposing

Ø Less diverse, versatile, and engaging interface to 
enable interactive preference elicitation, 
critiquing, refinement, and user control

On the other hand, they suffer from:

Øbetter coping with information overload ALL THE TIME (?) 
Øprovide GOOD ENOUGH explanation and reasoning to shape decisions (??)
ØCAPABLE OF support action taking (???)



Ø Performance gap when structured feature and 
data is scarce (e.g. cold start)

Ø Less diverse, versatile, and engaging interface to 
enable interactive preference elicitation, 
refinement, critiquing, and user control

Ø Lack interpreting nuanced natural language and 
other complex contexts for rapid adaptation to 
different scenarios

Ø No on-demand creation of complex outputs for 
enriched and personalized explanation & reasoning 
display, and coherent content repurposing

Ø Fill the data gap with LLMs’ open-world knowledge? 

Ø Leverage the semantic & multi-modal 
understanding capability, as well as the zero-shot 
capability of LLM?

Ø Introduce NL generation components with 
enhanced system control and reliability (grounded 
in retrieval)?

Ø Add verbalized interactive experience (e.g. QnA) 
with both member-initiated and agent-initiated 
short-term actions (e.g. via chatbot UI) and long-
term actions (e.g. via email / notification UI)? 

GenAI to the Rescue?



Not so Fast …

Ø Treat multi-modality data independently

Ø Retrieve from item corpus

Ø Specialized models for dedicated tasks

Ø Multi-stage Systems (chain-based)

Ø Human-generated output

Ø Backend-focused optimizations

What Personalized Recsys possess: 

Ø Jointly handle multi-modality data

Ø Retrieve from anything

Ø Unified models for all (including zero-shot) tasks

Ø Multi-component System (graph w. routing)

Ø AI-generated output

Ø Full-stack optimizations

What Personalized Assistants need: 



Not so Fast …

The perspectives are different even for those shared components / pillars:

Feature 
engineering LLM context improvementML model input improvement

Memorization Database-drivenModel-driven

Data processing / 
understanding

Unstructured & multi-modalStructured

Faster model 
inference

Transformer/MoE/…-centricCustomized

Robust serving User+agent+developer co-controlled logicsDeveloper-controlled domain logic

Evaluation Open-ended, user & agent-centricClosed-ended, system-centric



What people think 
makes us working 
overnight

What we are 
actually working 
on overnight

And Let’s not Forget the Unsung Hero (Hidden Boss?)



Impressive LLM 
capabilities

LLMOps

• …
• Prompt-response management
• Embedding / vectorstore / memory database ops
• API gateway management
• Skill registration
• Interface / tooling debuggability
• Messaging
• Autonomous agent orchestration
• Red / blue teaming
• Human-in-the-loop evaluation
• Observability / monitoring
• …

If LLM follows NL 
instruction and 
behave as they did in 
the demos!

And Let’s not Forget the Unsung Hero (Hidden Boss?)



Putting Perspectives Together

Feature

Activity

Context Display

Interface

???

Feature

Activity

Context Display

Interface

“LLM Modulo”

LLM

Ø LLM can enhance data & model for core Recsys tasks and applications
Ø LLM can produce diverse & complex outputs to power new display objectives beyond recommendation

Ø LLM can facilitate interactive design patterns and functions for advanced user tasks

Ø Merging LLM into existing tasks & applications requires justifying the ROI / consolidating new tech stack with existing ones
Ø Serving LLM-powered components require dedicated backend / mid-tier / front-end solutions (algo. & infra.)

Ø Shifting to GenAI system requires new frameworks for design, develop, evaluate, and ops (and reliability, trust & safety)

Identified the opportunites

Now need a roadmap to develop the capabilities



Putting Perspectives Together

Feature

Activity

Context Display

InterfaceLLM

Extract
Enhance
Transform
Analyze
…

Predict
Process
Simulate
Utilize
…

Represent
Interpret
Tracking
Inject
…

Curate
Repurpose
Enrich
Reasoning
…

Augment
Tool using
Text-to-text
Respond 
…

The opportunity we identified (w. “LLM Modulo” solution) How to get there from where we are?

Ø The analogy question is: how to replace a running car’s 
engine without stopping it (constraint) / posing safety 
concerns (risk) / getting pulled over (surveillance)?  

Ø Q1 – how to breakdown the goal into minimum 
executable steps?

Ø Q2 -  what are the prerequisites and interdependency 
of the breakdown steps?

Ø Q3 – risk-aware resource-constraint optimal planning 
and sequencing?

Can talk on it for hours but we bootstrap our solutions into 
what we call the “Tetralogy”



Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval & 
ranking sys

Display and 
Interface

Users

User passive feedback loop

User implicit input
e.g. click

Step 1 – enhance 
existing Recsys data 
and model

Existing 
paradigm

Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys



Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval & 
ranking sys

Display and 
Interface

Users

User passive feedback loop

User implicit input
e.g. click

Step 1 – enhance 
existing Recsys data 
and model

Step 2 – power new display 
objectives inc. explanation, 
reasoning, content repurposing …. 

Existing 
paradigm

Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys



Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval & 
ranking sys

Display and 
Interface

Users

User passive feedback loop

Users

Step 3– facilitate 
interactive design and 
advanced user tasks 

User proactive feedback loop

User implicit input
e.g. click

User explicit preference 
elicitation and task initiation

Direct retrieval / generation / action

Step 1 – enhance 
existing Recsys data 
and model

Step 2 – power new display 
objectives inc. explanation, 
reasoning, content repurposing …. 

Existing 
paradigm

New paradigm
Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys



Outline for the Next Sections

• Step 0 – LLM foundation and Ops

• Step 1 – Enhancing existing Recsys data and model

• Case study 1: LLM as cold-start candidate generator
• Case study 2: Semantic ID
• Case study 3: Unifying semantic search and contextual recommendation

• Step 2 – Enabling complex display objectives

• Case study 1: RAG for personalized explanation & reasoning
• Case study 2: Display (creative) optimization with bandits

• Step 3 – Facilitating interactive design and complex user tasks

• Case study 1: Register Recsys as Tools 
• Case study 2: Agent call patterns

• Step 0 (‘cont) – Alignment and Responsible GenAI 

• Case study: Multi-modal GenAI in Recsys



Heavily Abbreviated History 

50s Shannon model

60-80s Earliest chatbot, statistical language models

90-00s Dedicated language modeling

00-10s Representations, word embeddings

10-20s LSTM, RNN, Transformer, BERT

2020+ ”Bitter lesson”, “scaling law”, “emerging capabilities”

Exact retrieval, indexing

Vector space / probabilistic model

Personalization, learning to rank

Solving evolving user / business needs 
with new technologies

NLP IR & Recsys

Step 0 – LLM foundation and Ops



How LLMs are Built

Data cleaning

Tokenization

Position 
encoding

Architecture

Pre-training

Tuning

Alignment

Adaptation

Inference

Preprocessing
Denoising
Outlier
Dedup

Synthetic
…

Byte Pair
Word Piece

Sentence Piece
…

Absolute position
Relative position

Rotary
With bias

…

Encoder-only
Decoder-only

Encoder-decoder
…

Masked 
Causal

Next sentence
MoE

…

Supervised
Contrastive
Instruction 

following
…

Supervised
RLHF
DPO

…

LoRA
Distillation
Prompting

…

Top-k sampling
Top-p sampling
Greedy search
Beam search

…

Step 0 – LLM foundation and Ops



Step 0 – LLM foundation and Ops

How LLMs are (usually) Categorized

By Size

Ø Small <1B
Ø Medium 1~10B
Ø Large 10~100B
Ø Mega 100B+

By Tuning

Ø Untuned (original)
Ø Foundational (tuned not 

for instruction following)
Ø Instruction
Ø Chat
Ø …

By Enhancement

Ø Multi-modal
Ø Long-context
Ø Expanded token
Ø Domain expertise (e.g. Text2sql, 

tool-using, planning, law, 
medical, educational, …)

Ø …

Step 0 – LLM foundation and Ops



Some Known Limitations of LLM and Augmentation

Ø Stochastic

Ø Staled

Ø Lacking state tracking / memory

Ø Hallucinate

Ø Safety / privacy / integrity

Ø Very bulky to train / serve 

Ø CoT, ToT
Ø Self-consistency, reflection
Ø Automatic prompt optimization
Ø Rails (fact-checking, Jailbreaking)
Ø …

Ø Generic prompt augmentation

Ø Retrieval from Vectorstore / DB
Ø Reranking / chunking …
Ø RAG-aware prompt augmentation
Ø …

Ø Add external knowledge (RAG) 

Ø Use external tool
Ø Tool registration / API calls
Ø Tool-aware prompt augmentation
Ø …

Ø Equip with Agentic flows
Ø Reason and act, reasoning without observation
Ø Multi-agent control system
Ø …

More on this next

Final sections

Step 0 – LLM foundation and Ops



LLM Training Optimizations

Training traffic network

Nodes

Storage traffic network

Data storage  
Checkpoint storage

… …

Resource 
Scheduler

Recovery

Fail 
detection

Workload 
Scheduler

Ø Data
Ø Tensor
Ø Pipeline
Ø Expert
Ø Sequence

Ø Operator optimization
Ø Manual optimization
 (e.g. FlashAttn.)
Ø Auto optimization
 (e.g. kernel level)

Ø Mixed precision training

Ø Activation re-computation
Ø Redundancy reduction
Ø Defragmentation (partially, fully)
Ø Offloading

Ø CPU
Ø SSD

Ø Communication optimization (often the 
bottleneck for large GPU cluster!)

Ø Scheduler with network topology awareness
Ø Fault tolerance

Ø Detection
Ø Recovery 

Distributed training infra Parallelism Computation Optimization

Memory Reduction Management Optimization

Goal:

Ø Less memory consumption
Ø Faster computation
Ø Better hardware 

utilization
Ø Higher success rate

Step 0 – LLM foundation and Ops



LLM Inference Optimizations

Goal:

Ø Lower computational cost
Ø Lower memory access cost
Ø Lower memory cost

Ø Better latency
Ø Better throughput
Ø Better storage

Ø Input compression
Ø Prompt pruning
Ø Context summary
Ø Context compression

Ø Output organization

Data-level optimization

Ø Distillation
Ø Quantization
Ø Pruning
Ø Sparsification
Ø Structural 

optimization
Ø …

Model-level optimization

Ø Speculative decoding
Ø Parallel decoding
Ø Early exiting
Ø …

Algorithm-level optimization

System-level optimization

Memory management & caching Task scheduling

Ø Efficient KV cache
Ø Compression of KV 

cache
Ø Prompt cache
Ø Semantic cache
Ø Infinite LLM
Ø …

Ø Request batching
Ø Disaggregated 

inference
Ø Distributed system
Ø …

Kernel optimization

Ø Sampling 
optimization

Ø Support variable 
length

Ø Graph and operator 
optimization

Ø …

Step 0 – LLM foundation and Ops



LLM Evaluation and Observability

Ø Observability: Metrics
Ø System metrics (e.g. throughput, memory usage, HW 

utilization, service availability / uptime)
Ø Model performance metrics (e.g. accuracy, hallucination rate, 

length-related metrics …)
Ø Latency metrics (e.g. time to first token, time between tokens, 

tokens per sec, time per output token, total latency …)

Ø Observability: Logs
Ø Raw input / output
Ø Hydrated prompts
Ø Retrieved contexts
Ø Intermediate steps 

Ø Observability: Traces
Ø Flow executions
Ø API calls
Ø … (see Langsmith!)

Ø Generic NL Evaluation
Ø Entropy, perplexity, …
Ø Functional correctness, relevancy, coherence
Ø Similarity with reference data (BLUE, ROGUE …)

Ø Domain Evaluation
Ø E.g. Recsys / IR task evaluation
Ø E.g. QnA task evaluation

Ø New Evaluation Methods
Ø LLM-as-a-judge
 (note: criteria ambiguity, inconsistency, cost …)
Ø Comparative evaluation
 (note: lack scalability, standardization, interpretation …)
Ø …

Ø Open-ended Generation Evaluation
Ø Insutruction-following capability
Ø Factual consistency, faithfulness, safety …

Step 0 – LLM foundation and Ops



Step 0 – LLM foundation and Ops

Putting Things Together (for now…)

Development Serving

Prompt
engineering

Meta-prompts

Prompt eval, tuning, testing
Design and publish  prompt

Templating

Grounding
In-context learning

LLM pre-training / tuning

Learning from feedback 
Continual learning

Offline evaluation

Non-GAI models

Algorithmic acceleration
AI system and architecture 

optimization

Supplement / edge function

Models

Online monitoring / alarming

Delivery pipeline

Feedback loop

• LLM selection
• Adaptation to user task
• Database management
• External data integration
• GenAI evaluation
• Cost & latency optimization 
• Observability 

LLMOps

+

LLM Foundation

Get ready to build 
your first LLM 
solution in Recsys!



Overview

Feature 
engineering

Retrieval and 
ranking

DisplayUser-system 
interaction

Data and 
feedback 
processing

Next 
two 
parts

• Textual feature 
transformation

• NL interaction parsing
• Data augmentation
• Simulation
• Knowledge base integration

• Generative retrieval and 
recommendation

• Next-item prediction
• Prompting as ranking
• Cold-start/few-shot problem
• Cross-domain recommendation
• Dense retriever
• Cross-encoder methods
• …

• Enhanced (multi-modal) representation
• Semantic ID
• Retrieval-augmented
• Context interpretation

Prompt engineering 
+ fine tuning LLM 
are often sufficient to 
produce well-rounded 
solutions for most of 
these tasks!

Step 1 – Enhancing enhancing existing Recsys data and model



Productionizing Prompt Engineering Solutions

Prompt serialization

Ø What: seamless reading / writing 
prompts and metadata to and 
from file in production env.

Ø Why: ensure data consistency 
across applications, projects, 
environments, and CI/CD 
pipelines in a structured fashion.

Meta Prompts“Auto” prompt optimization

Ø What: organizing and packaging 
prompt template and relevant 
(model) parameters.

Ø Why: versioning the definition and 
configuration for prompt 
engineering in a unified fashion for 
integration and compatibility 
purposes.  

Ø What: build prompt abstractions 
and automatically refining 
prompts with gradient-guided or 
LLM-assisted frameworks

Ø Why: manually tuning prompts for 
black-box LLM is laborious and 
more like an art then science, and 
continuous optimization is 
challenging.

Step 1 – Enhancing enhancing existing Recsys data and model

Wen, Yuxin, et al. "Hard prompts made easy: Gradient-
based discrete optimization for prompt tuning and 

discovery."



Building and Serving LoRA LLM 

Training Serving

Ø Flexible, stable, and effective parameter-
efficient LLM tuning

Ø Versatile serving
Ø Can serve multi-LoRA on single 

GPU
Ø Can concurrently serving LoRA 

adapters for single and multiple 
requests

Why LoRA
Ø Be aware of the compute-memory tradeoff 

with quantization 
Ø Avoid “catastrophic forgetting” (overfitting 

for fine-tuning) with learning rate scheduler 
and controlling the tuning epochs / steps 

Ø Picking the right modules to target (the more 
the better for linear/proj. layers?)

Ø Balancing LoRA parameters r and alpha

Practical considerations

Step 1 – Enhancing enhancing existing Recsys data and model

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”
Sheng, Ying, et al. "S-lora: Serving thousands of concurrent lora adapters."



Case study 1: LLM as cold-start candidate generator

Scenario: how to retrieve real-time candidates for a member (with profile data) who started a session but 
has very few historical interaction records? 

Fine-tuning LLM

Ø What: collect in-house (user profile, 
context) to item engagement data to 
hydrate the NL training data, and tune 
the foundation model with contrastive 
loss in the Siamese setup.

Ø Remark: inject domain patterns and 
knowledge into the foundation LLM for 
optimal retrieval performance.

Prompt optimization“LLM2Vec”

Ø What: identify the optimal prompt 
template (for both member and item) 
that optimizes recall performance 
before tuning the LLM with in-house 
data.

Ø Remark: construct the best prompt 
configurations before tuning the model 
for maximum efficiency.

Ø What: converting long-context (which is 
often a decoder LLM) into a bi-directional 
foundation LLM (instruction-tuned).

Ø Remark: 1). Text-to-embeddings for the 
profile and session contexts to facilitate 
online KNN; 2). BERT models often don’t 
possess the context length, open-world 
knowledge, and instruction-follow ability 
of the more recent LLMs.

Step 1 – Enhancing enhancing existing Recsys data and model

Wang, Liang, et al. "Improving text embeddings with large 
language models."



Case study 2: Sematic ID

Scenario: how to more effectively encode large corpus of items in a semantically meaningful way so they can 
be integrated into LLM and downstream models ? 

Semantic ID in ranking model

Ø What: replace the atomic ID in ranking 
model for improved memory efficiency 
and generalization.

Ø Remark: semantic ID is a more 
memory-efficient and generalizable 
representation of large user / item 
corpus. (WHY?)

Generative retrieval“Semantic ID”

Ø What

Ø Remark: treating semantic IDs as 
tokens and apply NL techniques (e.g. 
seq-to-seq modeling) such that the 
generated tokens can be mapped to 
items.

Ø What:

Ø Remark: quantizing item representations 
with multi-level codebook: 

Step 1 – Enhancing enhancing existing Recsys data and model

Sun, Weiwei, et al. "Learning to tokenize for generative retrieval."
Rajput, Shashank, et al. "Recommender systems with generative retrieval.”



Step 1 – Enhancing enhancing existing Recsys data and model

Case study 3: unifying semantic search and contextual recommendation

Scenario: given their growing similarity in the problem space and the capacity of LLM, can we re-define query 
& context to facilitate unified solution for semantic search and contextual recommendation? 

Multi-LoRA support

Semantic ID backbone“NL context”

Ø Remark : the unified semantic 
representation is applicable to all tasks 
under NL contexts.

Ø What: a broader definition that includes 
explicit textual query, textualized 
scenario context (inc. user / item 
contexts).

Ø Remark: the goal is to cross-pollinating 
the semantic modeling of explicit 
(structured) query and personalized 
modeling of implicit (unstructured) 
contexts via LLM.

Ø Remark : enable a unified fine-tuning 
and serving stack to capture the 
specificity of each NL context in 
retrieval phases.

Unified ranking stack

Note: in practice, the retrieval phase is always multi-source with such as term-based retrieval still playing critical roles. 
            Now, with all the good items in the plate,  how do we serve a “visual feast” to the users? 



Recsys Display In a Nutshell

Ø Presenting raw recommendation is not enough:
Ø Mismatch between the representation of the suggestion versus users’ information need

Ø Need techniques for automatic generation of satisfactory explanation & reasoning & insights that are 
intelligible (UNDERSTANDABLE) for users interacting with the system

Ø But, understanding is rarely the end goal
Ø Need to operationalize the effectiveness of explanation & reasoning & insights in terms of a specific notion 

of  usefulness or display goal (e.g. improved particular decision support, reduce the cost of a specific type 
of error …)

Ø Explanation vs. transparency vs. justification
Ø Explanation don’t have to be transparent to the underlying algorithm
Ø A justification explains why a decision is a good one, without explaining how it was made

Ø Re-purposing raw contents (e.g. title rewrite) or generating new contents (e.g. homepage images in e-
commerce) are also optimizing specific notions of usefulness or display goal.

Ø Finally, keep in mind that the ”real estate” is limited especially on mobile Apps!

Step 2 – Enabling complex display objectives



Recsys Display In a Nutshell

Display Goal Definition Comment
Transparency Explain how the system works Establish visibility to the system status
Trust Increase user confidence Mitigating the effect of poor recommendation
Scrutability Allow user to tell when system is wrong Establish user control
Effectiveness Help user make good decisions Depend on the algorithm, also useful for introducing new domains 

and help understanding full range of options

Efficiency Help user make faster decisions Usability principle: understand which suggestion is the best, how 
quickly a task can be performed

Persuasiveness Convince user to try Attempt to influence user
Satisfaction Increase ease of use Aid the satisfaction with the reco process and recommended 

suggestions without adding cognitive efforts

Stakeholder goals Coherence with system welfare

Step 2 – Enabling complex display objectives



Recsys Display In a Nutshell

• Three generic levels of explanation & reasoning in social and E-commerce Recsys:
1. Individual-user level

• Using raw data the platform has on the user (including history)

2. Contextualization level
• Establishing relations to anything that’s not in user / content raw data but affects user behavior, e.g. 

situational feature, preference space, other users (neighbors), … 

3. Self-actualization level
• Moving beyond information-finding and promote discovery and exploration to fulfill personal / societal 

values and goals

4. And of course, the hybrid style

• What information to use? How to obtain them? How to use the obtained 
information?
• Retrieval-augmented generation (RAG) is a powerful technique for these challenges.

Step 2 – Enabling complex display objectives



RAG Overview

Datastore Index

Query Input

Top 
content LLM

encoder

+

transformation

prompt

Retrieval Generation

Re-purposing raw content

Explanation generation

Curating personalized 
reasoning and insights

……Rerank, Chunk

Three key questions

Ø What to retrieve?
Ø How to retrieve?
Ø How to use & serve retrieved 

contexts?

Practical Painpoints

Ø Information missing from retrieval;
Ø Useful information isn’t consolidated into context;
Ø Having useful information in the context, but end 

up not specified / in wrong format / hallucinated in 
the response;

Ø Response is too generic / incomplete;
Ø …

Step 2 – Enabling complex display objectives

Sources of Information

Ø Unstructured datastores and 
structured knowledge bases / 
graphs (most common);

Ø Real-time contexts;
Ø Various plugins for combining with 

domain knowledge and results
Ø ...



Case Study 1 – RAG for personalized explanation and reasoning

Individual user level (insights in relation to 
people background)

• Content-based explanation
Consider similarity between content 
attributes / properties based on user 
behaviors
Keywords, tags, topics…

• Case-based (influence) reasoning
Detailed contents are omitted and focus on 
considering cases for comparison

• Knowledge / Utility reasoning
Reasons over knowledgebase can overlap 
with the above styles for achieving certain 
utilities

Contextualization level (insights in relation 
to a context)

• Collaborative reasoning 
Adding persuasion from neighbors 
(assuming there’s already some 
interests)  

• Action reasoning
Extrapolating other explanation styles 
into the action space 

• Blind-spot explanation
Contextualization in relation to the 
overall space 

• …

Self-actualization level (insights in 
relation to personal values / goals, the 
reasoning can have more impact than the 
recommendation itself)

• Goal-directing explanation 
Suppose we have user labels for goal / 
intent understanding

• User-controlled explanation
Writing actions controlled by user

• Broaden-the-horizon (educational) 
reasoning

• Discover-the-unexplored 
explanation

What to retrieve?

Step 2 – Enabling complex display objectives



Case Study 1 – RAG for personalized explanation and reasoning

Embedding-based retrieval

How to retrieve?

Generative retrieval

Content-based filtering

Collaborative filtering retrieval

Indexing and matching

And don’t forget to invest in…

Ø Encoder, query transformation
Ø Chunking / aggregation strategy 
Ø VectorStore operations
Ø Adaptive & recursive retrieval
Ø Retrieval from external sources
Ø … (agentic RAG flows)

Ø Methods like TF-IDF and PMI-
based retrieval are effective 
with reasonable performance 
and good interpretability for 
certain tasks

Ø The new retrieval paradigm, 
supplementing existing 
methods in long-context 
scenarios

Ø Methods like BM25 are still the 
key players for many types of 
queries

Ø Good at capturing similarity 
patterns from interaction data 
for certain styles of explanation 
/ reasoning 

Ø Versatile with abundant 
established solutions (including 
LLM2Vec)

Ø Can take advantage of the 
VectorStore advancements

Step 2 – Enabling complex display objectives



Case Study 1 – RAG for personalized explanation and reasoning

How to use retrieval depends on product design and how well the system is productionized.

Canary testings

Encoder & Index 
upgrade

Query, ranking, and prompting
process iteration

Data store 
improvement

• Data store construction
• Encoder optimization
• Index building

• Query/chunk process
• Rerank, consolidate
• Prompting LLM

Synthetic generation

App serving infra optimization
e.g. caching, pagination

AI hardware optimization
e.g. quantization, parallel

GAI algorithm
e.g. compressionOffline

Online

Development Evaluation Deployment Iteration

RAG as Curator Recsys User
feedback

Curated contents, reason, explanation … Curation-enhanced recommendations

Real-world
testings

Human-in-the-loop 
offline assessment

Remark: as the display component of an online system, we want 
the product design and RAG strategy to evolve and adapt quickly to 
users’ needs. But how do we know what might work??

Step 2 – Enabling complex display objectives



Step 2 – Enabling complex display objectives

Case Study 2 – Display (creative) optimization with bandits

Scenario: how to effectively probe and adapt display strategies to individual user needs under 
various (evolving) contexts? 

Policy optimizationDefining the bandit problem

Ø Contextual information to use
Richer and richer with the new definition of 
NL contexts.

Ø Policy structure
Linear structure is best established;
Neural nets are more suitable for the 
unstructured NL contexts.

Ø E/E strategy
Epsilon greedy, Thompson sampling

Ø Policy learning and evaluation
Off-policy learning & eval with logged data

Ø What: (contextual) bandit is an 
algorithmic framework that learns optimal 
decisions by balancing exploration & 
exploitation (while considering 
contextual information for each decision).

Challenges in practice

Ø Define the right problem (RAG 
problem space is very large with 
a lot of configurations, the 
problem space for copy 
optimization is often simpler)

Ø Evolving problem space
Ø Delayed / indirect reward
Ø Non-stationary environment
Ø Runtime uncertainty
Ø Sensitivity of off-policy eval
Ø …

With good items in the plate and a visual feast, now, how to arrange a satisfactory interaction experience for the users? 



Interactive (conversational) Recsys before the LLM Era

ØAsk for recommendation
Ø Input preference
Ø Inquire information
ØAnswer system problem
ØProvide feedback to recommendation
Ø Input critique
Ø…

ØRequest information
Ø Provide recommendation
ØAnswer question
Ø Provide explanation / reasoning
Ø Inform and acknowledgement

User Actions

System Actions

Intent 
Understanding

(with conventional 
MLSys)

Belief and state 
tracking

(read / write <-> DB)

Generate response
(model-free template-

based generation)

.

.
.

.

.
What capabilities 
are lacking in this 

paradigm?

Step 3 – Facilitating interactive design and complex user tasks



Decision making

Ø Current paradigm: using 
hard-coded routing logics so 
the system itself cannot plan 
and make decisions 
adaptively under all contexts 
and user actions.

MemorizationCognition

Ø Current paradigm: unable 
to effectively process 
complex dialogue states, 
user history, and other 
unstructured / semi-
structured data formats.

Ø Current paradigm: limited by 
conventional ML sys’ 
capability to fulfill the intent 
recognition tasks and 
interpreting complex context.

Ø Fix: use LLM’s open-world, 
generalization, and zero-shot 
capability for fine-grained and 
adaptive cognition tasks.

Acting

Ø Current paradigm: restricted 
within the dialogue system, 
mostly reactive rather than 
proactive, and not interfacing 
with external tools and 
systems for read, write, and 
more complex operations.

Ø Fix: introduce structure / 
format conversions and on-
demand transformation with 
LLM, and VectorStore as 
short-term / long-term DB 
solutions.

Ø Fix: combining hard-coded 
logics with the preliminary 
reasoning capability of LLM 
for generic task planning and 
adaptive routing & decision-
making.

Ø Fix: leverage LLM’s API 
interfacing capability for tool 
access, utilization, and more 
complex system operations 
like system and user-initiated 
actions.

Interactive (conversational) Recsys before the LLM Era

Step 3 – Facilitating interactive design and complex user tasks



Integrating the New Capabilities

Reasoning/Self
-reflection loop

Identity Context History Memory Tools library

Planning & 
Decision-making

Guardrail

Tool A Tool C

Tool B

Guardrail

Response

External 
APIs

Recsys 
APIs

Database 
query

Internal 
workflows

Data 
model

User 
Input

Cognition
…

Memory

Step 
T

Step 
T+1

Step 
T+2

……

Acting

A monster control system:

Ø How many Agents (specialized entity that 
perform a specific complex task) are 
needed?

Ø How many Tools (atomic operation with well-
defined inputs and outputs)?

Ø How to orchestrate?
Ø Task -- decompose, execute, …
Ø Agent -- creation, communication…
Ø Resource -- memory, computation…
Ø Workflow – chaining, sequencing, ….

Ø How to evaluate & optimize online / offline?

Ø Need a holistic framework to enhance 
capability, scalability, flexibility, resource 
efficiency, fault tolerance.

Step 3 – Facilitating interactive design and complex user tasks



Multi-agent Framework

Design, manage, orchestrate, and coordinate multiple AI agents to work together on complex tasks. 

Specialized sub-agents

Graph structured w. router

Standard communication

Organized tool registry

Distributed 

Other important components
Ø Access control
Ø Conflict resolution
Ø Messaging system
Ø Memory / caching
Ø Observability
Ø Error handling …

Ø Agents communicate through 
standardized API interfaces and 
protocols

Ø Centralized control panel & 
message queues

Ø Graph representation with nodes as 
agents and edges as 
communications, cycles enabled;

Ø Router (e.g. played by agent) as the 
controller for main state transitions.

Ø Each agent operates 
independently as a microservice

Ø Enhances flexibility and 
scalability 

Ø Enable unified creation, 
discovery, configuration, 
experimentation of tools.

Ø Each sub-agent is specialized 
in a given task (e.g. with 
dedicated large or small LLM as 
backbone)

Step 3 – Facilitating interactive design and complex user tasks



Step 3 – Facilitating interactive design and complex user tasks

Case Study 1 -- Register Recsys as Tools

Scenario: after building the unified semantic & contextual Recsys, in the agentic framework, it 
needs to be registered as a tool in order to be discovered, invoked, managed, and experimented.

Management

Ø What: managing the lifecycle 
of Recsys including 
description change, upgrade, 
deprecation, etc.

InvocationDiscovery

Ø What: Agent can easily and 
correctly call the Recsys 
API and process the input & 
output.

Ø What: the Recsys can be 
matched to the appropriate 
task by the Agent.

Ø How: provide and refresh 
well-documented Tool 
description and definitions to 
the short-term and long-term 
memories.

Experimentation

Ø What : A/B testing the impact 
of a Recsys upgrade in the 
agentic system.

Ø How: versioning the Tool and 
simultaneously handling 
referencing and rollout (inc. 
hierarchical tools).

Ø How: maintain both the 
control and treatment 
variants of the Tool in the 
discovery, invocation, and 
management cycles.

Ø How: 1). adopt the 
standardized communication 
protocols, 2). building 
versatile Tools (e.g. that can 
take any NL context).



Step 3 – Facilitating interactive design and complex user tasks

Case Study 2 – Agent Call Patterns

User

Messaging Sys

Routing Agent

Messaging Sys

Agent 1 Agent 2

Tool #1 
(Recsys A)

Tool #2 
(Recsys B)

Memory

Tool #3 
(EmailAPI)

Tool #4 
(Scheduler)

Agent lifecycle 
management

Tool lifecycle 
management

        Roughly speaking…

User -> Msg. -> Routing Agent -> Msg. -> Agent 1 -> SyncCall(Tool#1, Tool#2)
                                                         |
                  |
User <- Msg. <- Routing Agent <- (Msg. , Memory) <-  Agent1 
     |
     |
                                               Agent 2 -> Memory -> AsyncCall(Tool#3, Tool#4) 

Scenario: 
Ø user msg: </>Email me with 
Halloween decoration 
recommendation and best deals 
tonight. </>.

Ø Sys response: </> Scheduled. </>.

Remark: 
Ø in reality, we don’t need to do such 

traversals for all requests by leveraging (in-
memory) caching solutions

Ø other typical service optimizations include 
load balancing, parallel / async. 
processing, and message-queue-DB and 
even API designs (e.g. gRPC vs. REST) 



Beyond evaluating LLM: Human-in-the-loop for GenAI systems 

We have talked about:
Ø Why to evaluate: assessment (reward and risk), selection, guard railing …
Ø What to evaluate: generic NL tasks, domain-specific tasks, generation evaluation …
Ø How to evaluate: benchmark, scoring models, LLM-as-a-judge (jury of LLM) ... Human-in-the-loop?

Annotation agreement
• Goal
• Criteria
• Tooling
• …

High 
confidence

Human annotation service

Eval 
report

Obtain confidence level 
using in-house LLM

Filtering 
ParsingGenAI system

Design cases and 
refine data selection

Further examination for 
low-confidence cases

Recruit 
and train

Control 
operation

Performance 
management

Improve 
eval process

Improve data 
strategies

Resolve 
conflicts

People

Task

Quality 
assurance team

Legal team

Step 0 (‘cont) – Alignment and Reliable GenAI



AI-Human Alignment in a Nutshell

Data-driven approach Algorithmic approach HCI design

What is alignment? 
-- Telling model / system what is safe, what is helpful, what is harmful, what is useless ...... such 
that they can always behave in the intended ways.

Prompt 
improvement

High-quality 
human feedback

Improve learning 
objectives

Controlled 
generation

Debasing

Calibration

Filtering

Inference-time 
Scaling

Add Interpretability 
& Reasoning

Augmentation Feedback 
mechanism

Debasing
Prompt 

improvement

Inference-time 
Scaling

Controlled 
generation

Filtering

Step 0 (‘cont) – Alignment and Reliable GenAI



Defend and Build Trusted GenRec System

Open-source 
model

Public data

Custom 
model

Proprietary 
data

Agents
Response

Input

Alignment

Detox.

Access control

Retrieval-
augmented

Guardrail

Firewall
Reflecting
Critiquing

Multi-layer defense (the ideal setup)

Step 0 (‘cont) – Alignment and Reliable GenAI

Supply Dev Ops Serve

Challenges in reality: 
Ø Many of these are resource-intensive operations (both offline and online)
Ø How to scale up and reduce redundant operations?
Ø How to effective handle the evolving threat landscape and governance …



Defend and Build Trusted GenRec System

Agent

LLM

Context

Memory

Plan

Reason

Tool

ØModel routing
ØBy expertise / performance / 

trustworthiness / cost …
ØGuardrail

ØAccuracy / latency / …
ØFine-tuning

ØSecurity / reliability / fairness / 
bias / ethic …

Blue-team defense
ØReliability

ØCorrectness / consistency / 
robustness

ØSecurity
ØJailbreak / injection / theft …

ØSafety
Ø Privacy / toxicity / bias / 

fairness / ethic …

Red-team defense

Offering 
adaptive 
solution

Offering 
rigid 
solution

Red and blue teaming (the ideal setup)

Step 0 (‘cont) – Alignment and Reliable GenAI

……

Challenges in reality: 
Ø Similarly, many of these are resource-intensive operations (both offline and online)
Ø Lack of consensus on standardization for developing and testing many of the components
Ø Data scarcity issues (just like fraud detection)
Ø Aligning with the regulatory compliances …



Step 0 (‘cont) – Alignment and Reliable GenAI

Putting Things Together (finalized)

Development Serving

Prompt
engineering

Meta-prompts

Prompt eval, tuning, testing
Design and publish  prompt

Templating

Grounding
In-context learning

Tool / API registry

Publishing and discovery
Skill creation and testing

Chain orchestration

Planning
Reasoning

Content indexing

API onboarding
DB onboarding

EBR (unstructured) query
DB & API query

Conversation management

LLM pre-training / tuning

Learning from feedback 
Continual learning

Offline evaluation

Non-GAI models

Algorithmic acceleration
AI system and architecture 

optimization

Supplement / edge function

Red teamingGAI response risk assessment
Access control and 
moderation service

Human-in-the-loop 
development

Tools

Content &
memory

Models

Responsible AI

Controlled generationData collection/annotation

Online monitoring / alarming

Delivery pipeline

Feedback loop

• LLM selection
• Adaptation to user task
• Database management
• API / Tool registry
• External data integration
• GenAI evaluation
• Cost & latency optimization 
• Observability 
• Human-in-the-loop
• Trust and reliable AI
• Chain orchestration
• Defense
• Human-AI alignment

LLM Foundation LLMOps

+

Get ready to build 
your first Personalized 
Assistant!



Step 0 (‘cont) – Alignment and Reliable GenAI

Case Study: Multi-modal GenAI in Recsys

Categorization

Harm and Risks

Model Building

Integration

Applications
Ø Contrastive:

Learn multi-modal representations 
that are aligned in the embedding 
space (e.g. CLIP);

Ø Generative:
Learn latent structure of multi-modal 
data generation process (e.g. VAE, 
Diffusion models).

Ø Improving recommendation (e.g. Multi-
modal representation learning and 
retrieval)

Ø Improving display (e.g. image 
refinement, description / review 
generation)

Ø Improving interactivity (e.g. virtual try-
on, in-context visualization)

Ø Pretraining – contrastive or generative 
pretraining of multi-modal encoder-
decoder model on large multi-dim corpus 
with fusing techniques.

Ø Tuning  -- often instruction-tuned and fine-
tuned (e.g. with LoRA and conditioning) for 
domain alignment & controlled generation.

Ø As a tool:
e.g. taking (processed) textual input 
and output the generated images.

Ø As a controller (Agent):
e.g. take prompt and multi-modal data 
as input, and generate task 
decomposition and call sub-agents.

Ø Misinformation (curation vs. creation)
Ø Manipulative danger (false persuasion)
Ø Safety concerns (especially when images 

are involved) 
Ø Societal bias
Ø Legal issues (e.g. infringement)
Ø More challenges in evaluation (lack of 

data, difficult to audit …) 

Defend and Trust
Ø Recap:

Ø Multi-layer defense on the (Input, 
Response) layer, Ops layer, Dev 
layer, and Supply layer 

Ø Red teaming as the rigid solution
Ø Blue teaming as the adaptive 

solution
Ø …

Landing multi-modal GenAI in Recsys covers all the elements discussed in this tutorial. 



Some Interesting Open Problems

Ø GenRec assistant with persona

Ø Synthetic data generation and integration

Ø Renovated HCI design elements and concepts

• Online/offline evaluation, observability and monitoring
• Goal: developing a parallel process to measure and maintain the efficacy of the GenAI components in the system 

• Challenges: brittle metrics, measuring generated responses at scale, ensuring reproducibility, longitudinal analysis, coming 
up with appropriate monitoring and experimental designs for both user satisfaction and system efficiency

• Seamless multi-modality integration and serving
• Goal: effectively collect, process, understand the relationship, and produce coherent outputs that 1). Incorporate patterns 

from various input types; 2). Enable natural and diverse human-computer interactions

• Challenges: obtaining high-quality data, data integration complexity, synchronizing and alignment, need more advanced 
pre-training / tuning techniques, standardization and interpretability, serving scalability …



Some Critical Open Problems

• Effective in-house GAI serving stack
• Goal: hitting the optimal tradeoff between performance, cost, and latency with trust/safety control

• Challenges: managing fragmented tech stacks, catching up with new solution ideas, addressing data silos and safety 
concerns, scaling applications with resource constraints …

• Acquiring high-quality human data at scale
• Goal: providing the fuel for all stages in the GAI development cycle (unlike Recsys which can leverage a wide range of user 

feedback)
• Challenges: cost of human annotation, procedural complexity of training and workforce management, task and criteria 

design  …

Ø Consistent quality, reliability, and high success rate (especially for Agentic systems) 

Ø All the unresolved privacy-related issues

Ø Real LLM4Planning and life-long learning capability



Final Remarks

• Can’t emphasize enough on data
• “Garbage in garbage out” is still a very real thing in the LLM era

• Viewpoints on “LLM for planning”
• Depends on whether the question has already been answered in the prompt?
• Remains largely an open field of study, be cautious in production …

• Challenges of CI/CD in this fast-evolving problem space
• Similar to what deep learning practitioners have experienced before 2015, troubled by tool migration and maintenance issues?

• On the growing computational capacity
• How much to count on “the bitter lesson”, “scaling law”, and “emerging capability” to set long-term goals and visions?

• Adopt a framework v.s. build your own
• No free lunch

• How AI teams and initiatives could be more effectively organized in the future?

• Reflecting on some ongoing Agent initiatives (feat. @Danqing Zhang)



Product 1 -- LiteMultiAgent (@Danqing Zhang) 

● LiteMultiAgent
○ https://github.com/PathOnAI/LiteMultiAgent -- a hierarchical multi-agent 

system
○ Highlights -- hierarchy of agents (where high-level agents use sub-agents as tools 

through function calling) such that the execution of sub-agents is parallelized by 
parallel function calling.

○ System components
■ Tool Registry: register custom functions, sub-agents as tools
■ AgentFactory: Creates agent instances, with different agent class and agent type
■ AgentManager: Manages agent interactions and hierarchies.

https://github.com/PathOnAI/LiteMultiAgent




● LiteWebAgent
■ https://github.com/PathOnAI/LiteWebAgent

■ Highlights
● decouple action generation and action grounding

○ action generation
○ action grounding

● flexible framework to incorporate different types of agents with strong baseline
○ planning agent that replans based on action execution
○ context-aware high-level planning
○ prompting agents

● first open-source framework that includes search agent for web browsing
○ implemented basic BFS/ DFS search agent
○ built solid framework and extended to the MCTS, LATS search agent for web browsing

● user interface, demo effect and browser 

Product 2 -- LiteMultiAgent (@Danqing Zhang) 

https://github.com/PathOnAI/LiteWebAgent




THANK YOU, Enjoy CIKM’24 and Boise : )

Q&A

We are always just one email / LinkedIn DM away : )
Presenter contact: daxu5180@gmail.com

Interested in Danqing’s startup projects? Contact: danqing.zhang.personal@gmail.com

Xu, Da, et al. "Survey for Landing Generative AI in Social and E-commerce Recsys--the Industry Perspectives. " 
(this tutorial will be reflected in V2 of the survey paper releasing in Nov 2024) 

mailto:daxu5180@gmail.com
mailto:danqing.zhang.personal@gmail.com

