
Tutorial on Landing
Generative AI in Industrial

Social and E-commerce Recsys

Presenter: Da Xu

Organization: LinkedIn, Microsoft,
Amazon, Meta, ByteDance

Xu, Da, et al. "Survey for Landing Generative AI in Social and E-commerce Recsys--the Industry Perspectives. "
(this tutorial will be reflected in V2 of the survey paper releasing in Nov 2024)

Da Xu
Staff AI engineer

LinkedIn

Danqing Zhang
Founder

Stealth Startup
(with demo in this tutorial!)

Lingling Zheng
Principal scientist

Microsoft

Bo Yang
Applied Scientist

Amazon

Guangyu Yang
Senior ML engineer

Meta

Shuyuan Xu
Research Scientist

ByteDance

Cindy Liang
Head of Network Growth AI

LinkedIn

Contributors

THE EVOLVING USER NEED FROM RECSYS

• Why people come to the social and e-commerce platforms nowadays --

Ø information seeking and discovery (i.e. search & recommendation)
Ø complete user tasks (i.e. buy merchandise, get updates, learn about something …)

• What people need from Recsys in these platforms nowadays:
Ø better coping with information overload
Ø provide explanation and reasoning to shape decisions
Ø support action taking

THE EVOLVING USER NEED FROM RECSYS

• Why people need Recsys in these platforms (THE WHY):

Ø better coping with information overload

Ø provide explanation and reasoning to shape decisions

Ø support action taking

• It entails an upgrade from Personalized Suggestion to Personalized Assistance, however:

Ø growing level of ambiguity in new problem definitions and complexity to develop the right capabilities

Ø despite GenAI’s seeming vast potential, what are the opportunity areas and how to facilitate the paradigm shift?

 ↑ ↑
 two contributions of this tutorial: THE WHAT + THE HOW

A QUICK NOTE ON THE EVOLVING SOCIETAL NEED FROM RECSYS (WILL NOT
BE COVERED IN THIS TUTORIAL)

• Societal roles of Recsys nowadays:
Ø Connecting creator to audiences (supply to demand)

Ø Shaping content creation (supply strategy)

Ø Impacting platform / creator economics (market dynamics)

• Similarly, GenAI opens new opportunity areas:
Ø AI-assisted marketing analysis and monetization strategy, content and campaign creation …

Ø Cross-platform integration

• Also, new challenges arise:
Ø Understanding the redistributed competition landscape with AI and AI-guided strategy as the new players

Ø The ethics framework need a significant upgrade to ensure the welfares of all parties

Activity

Context
Display

Interface

Feature

Serving

Modelling View Product View

Engineering View

Activity Context Display Interface× × ×Feature × × Serving

To Better Understand how to Support the Evolving User need, Let’s
Breaking Down Industry Recsys by Functional Pillars

ØFeature: raveling the characteristics of the
user / item, based on which the matching and
predictions algorithms can be developed.

Ø Activity: serving as labels and / or signals
(e.g. in sequence recommendation) for
capturing user explicit / implicit preferences.

Ø Context: consisting of situational features
that affects user preference and behavior, but
are not part of the user and item
characteristics.

Ø Display: the design of visual presentation of
selected information to the user.

Ø Interface: the interactive elements and
concepts (including feedback and task
completion mechanisms) and navigation
logics of the system.

Ø Serving: systematically delivering all the
above elements and functionalities to users.

Feature
(Context)

Activity Display

Feature Activity

Feature

Context

Activity

Feature

Activity

InterfaceContext

Feature

Activity

Context Display

Interface

General Recsys Contextual Recsys Recsys w. display optimization

Cross-domain Recsys ???

To Better Understand how to Support the Evolving User need, Let’s
Check Out the Evolvement of Recsys Design Patterns

Activity Context Display Interface× × ×Feature ×

• Numerical
• Categorical

(inc. ID)
• Pairwise
• Hidden
• Image etc.
• …

• Matrix
• Set
• Graph
• Sequence
• Review
• Multi-turn Q&A
• …

• Latent factor methods
• GNN methods
• Sequential methods
• Markov Chain methods
• Multi-task / meta / online methods
• …

• Sequence encoder
• Natural language encoder
• Next item prediction
• Conversational
• …

Input

Method

NLP
application

Output
• Ranked list
• Top-1
• Bundled
• Grouped
• …

Well-understood as the primary focus area in pre-GenAI era

× Serving

• Contextual filtering
• Contextual modeling
• Exploration / Exploitation (RL)
• …

Input

Method

NLP
application

Output

• Static <> Dynamic

• Explicit <> Latent

• Partial <> Complete

• Context-driven query / search
• Text encoding (e.g. review)
• …

Know contexts are important, but less focused in pre-GenAI era

……

Activity Context Display Interface× × ×Feature × × Serving

Input

Method

NLP
application

Output

Less understood, less explored in pre-GenAI era (but can significantly impact all
sorts of user behaviors!)

• Non-textual, non-interactive (e.g. click, purchase)
• …

• Natural language template hydrated with knowledge
metadata (e.g. explanation)

• …

…… ……

• Knowledge extraction / standardization
• …

Activity Context Display Interface× × ×Feature × × Serving

Input

Method

NLP
application

Output

Focus on optimizing customized (small) models in pre-GenAI era

• Standard numerical
features

• Embedded non-
numerical features

• …

…… ……

Activity Context Display Interface× × ×Feature × × Serving

• Model compression
• Quantization
• Distillation
• Compilation (GPU-

based serving)
• Containerization
• API-based serving
• Adaptive batching
• Async processing
• Automated scaling
• …

• Structured output
• …

……

Ø Strong personalized filtering and prediction of
the available information in existing corpus
when abundant structured feature and data
are available

Ø Exhibiting some level of contextual awareness

Ø Displaying templated knowledge-based
justification (persuasion) and reasoning to
accompany raw contents

Ø Focusing on passive preference elicitation
interface design concepts (e.g. standardized,
non-verbal interaction) with limited user-
system interactivity

To summarize, existing industrial Recsys:

Ø Performance gap when structured feature and
data is scarce (e.g. cold start, multi-modal)

Ø Lack interpreting nuanced natural language and
other complex contexts for rapid adaptation to
different scenarios

Ø No on-demand creation of complex outputs for
enriched and personalized display of
explanation, reasoning, and coherent content
repurposing

Ø Less diverse, versatile, and engaging interface to
enable interactive preference elicitation,
critiquing, refinement, and user control

On the other hand, they suffer from:

Øbetter coping with information overload ALL THE TIME (?)
Øprovide GOOD ENOUGH explanation and reasoning to shape decisions (??)
ØCAPABLE OF support action taking (???)

Ø Performance gap when structured feature and
data is scarce (e.g. cold start)

Ø Less diverse, versatile, and engaging interface to
enable interactive preference elicitation,
refinement, critiquing, and user control

Ø Lack interpreting nuanced natural language and
other complex contexts for rapid adaptation to
different scenarios

Ø No on-demand creation of complex outputs for
enriched and personalized explanation & reasoning
display, and coherent content repurposing

Ø Fill the data gap with LLMs’ open-world knowledge?

Ø Leverage the semantic & multi-modal
understanding capability, as well as the zero-shot
capability of LLM?

Ø Introduce NL generation components with
enhanced system control and reliability (grounded
in retrieval)?

Ø Add verbalized interactive experience (e.g. QnA)
with both member-initiated and agent-initiated
short-term actions (e.g. via chatbot UI) and long-
term actions (e.g. via email / notification UI)?

GenAI to the Rescue?

Not so Fast …

Ø Treat multi-modality data independently

Ø Retrieve from item corpus

Ø Specialized models for dedicated tasks

Ø Multi-stage Systems (chain-based)

Ø Human-generated output

Ø Backend-focused optimizations

What Personalized Recsys possess:

Ø Jointly handle multi-modality data

Ø Retrieve from anything

Ø Unified models for all (including zero-shot) tasks

Ø Multi-component System (graph w. routing)

Ø AI-generated output

Ø Full-stack optimizations

What Personalized Assistants need:

Not so Fast …

The perspectives are different even for those shared components / pillars:

Feature
engineering LLM context improvementML model input improvement

Memorization Database-drivenModel-driven

Data processing /
understanding

Unstructured & multi-modalStructured

Faster model
inference

Transformer/MoE/…-centricCustomized

Robust serving User+agent+developer co-controlled logicsDeveloper-controlled domain logic

Evaluation Open-ended, user & agent-centricClosed-ended, system-centric

What people think
makes us working
overnight

What we are
actually working
on overnight

And Let’s not Forget the Unsung Hero (Hidden Boss?)

Impressive LLM
capabilities

LLMOps

• …
• Prompt-response management
• Embedding / vectorstore / memory database ops
• API gateway management
• Skill registration
• Interface / tooling debuggability
• Messaging
• Autonomous agent orchestration
• Red / blue teaming
• Human-in-the-loop evaluation
• Observability / monitoring
• …

If LLM follows NL
instruction and
behave as they did in
the demos!

And Let’s not Forget the Unsung Hero (Hidden Boss?)

Putting Perspectives Together

Feature

Activity

Context Display

Interface

???

Feature

Activity

Context Display

Interface

“LLM Modulo”

LLM

Ø LLM can enhance data & model for core Recsys tasks and applications
Ø LLM can produce diverse & complex outputs to power new display objectives beyond recommendation

Ø LLM can facilitate interactive design patterns and functions for advanced user tasks

Ø Merging LLM into existing tasks & applications requires justifying the ROI / consolidating new tech stack with existing ones
Ø Serving LLM-powered components require dedicated backend / mid-tier / front-end solutions (algo. & infra.)

Ø Shifting to GenAI system requires new frameworks for design, develop, evaluate, and ops (and reliability, trust & safety)

Identified the opportunites

Now need a roadmap to develop the capabilities

Putting Perspectives Together

Feature

Activity

Context Display

InterfaceLLM

Extract
Enhance
Transform
Analyze
…

Predict
Process
Simulate
Utilize
…

Represent
Interpret
Tracking
Inject
…

Curate
Repurpose
Enrich
Reasoning
…

Augment
Tool using
Text-to-text
Respond
…

The opportunity we identified (w. “LLM Modulo” solution) How to get there from where we are?

Ø The analogy question is: how to replace a running car’s
engine without stopping it (constraint) / posing safety
concerns (risk) / getting pulled over (surveillance)?

Ø Q1 – how to breakdown the goal into minimum
executable steps?

Ø Q2 - what are the prerequisites and interdependency
of the breakdown steps?

Ø Q3 – risk-aware resource-constraint optimal planning
and sequencing?

Can talk on it for hours but we bootstrap our solutions into
what we call the “Tetralogy”

Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval &
ranking sys

Display and
Interface

Users

User passive feedback loop

User implicit input
e.g. click

Step 1 – enhance
existing Recsys data
and model

Existing
paradigm

Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys

Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval &
ranking sys

Display and
Interface

Users

User passive feedback loop

User implicit input
e.g. click

Step 1 – enhance
existing Recsys data
and model

Step 2 – power new display
objectives inc. explanation,
reasoning, content repurposing ….

Existing
paradigm

Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys

Human creator

Raw data

Enhanced data

LLM

Upload

Curate

Retrieval &
ranking sys

Display and
Interface

Users

User passive feedback loop

Users

Step 3– facilitate
interactive design and
advanced user tasks

User proactive feedback loop

User implicit input
e.g. click

User explicit preference
elicitation and task initiation

Direct retrieval / generation / action

Step 1 – enhance
existing Recsys data
and model

Step 2 – power new display
objectives inc. explanation,
reasoning, content repurposing ….

Existing
paradigm

New paradigm
Step 0– LLM foundation, Ops, Human-AI alignment and responsible AI

The “Tetralogy” for landing GenAI in Social and E-commerce Recsys

Outline for the Next Sections

• Step 0 – LLM foundation and Ops

• Step 1 – Enhancing existing Recsys data and model

• Case study 1: LLM as cold-start candidate generator
• Case study 2: Semantic ID
• Case study 3: Unifying semantic search and contextual recommendation

• Step 2 – Enabling complex display objectives

• Case study 1: RAG for personalized explanation & reasoning
• Case study 2: Display (creative) optimization with bandits

• Step 3 – Facilitating interactive design and complex user tasks

• Case study 1: Register Recsys as Tools
• Case study 2: Agent call patterns

• Step 0 (‘cont) – Alignment and Responsible GenAI

• Case study: Multi-modal GenAI in Recsys

Heavily Abbreviated History

50s Shannon model

60-80s Earliest chatbot, statistical language models

90-00s Dedicated language modeling

00-10s Representations, word embeddings

10-20s LSTM, RNN, Transformer, BERT

2020+ ”Bitter lesson”, “scaling law”, “emerging capabilities”

Exact retrieval, indexing

Vector space / probabilistic model

Personalization, learning to rank

Solving evolving user / business needs
with new technologies

NLP IR & Recsys

Step 0 – LLM foundation and Ops

How LLMs are Built

Data cleaning

Tokenization

Position
encoding

Architecture

Pre-training

Tuning

Alignment

Adaptation

Inference

Preprocessing
Denoising
Outlier
Dedup

Synthetic
…

Byte Pair
Word Piece

Sentence Piece
…

Absolute position
Relative position

Rotary
With bias

…

Encoder-only
Decoder-only

Encoder-decoder
…

Masked
Causal

Next sentence
MoE

…

Supervised
Contrastive
Instruction

following
…

Supervised
RLHF
DPO

…

LoRA
Distillation
Prompting

…

Top-k sampling
Top-p sampling
Greedy search
Beam search

…

Step 0 – LLM foundation and Ops

Step 0 – LLM foundation and Ops

How LLMs are (usually) Categorized

By Size

Ø Small <1B
Ø Medium 1~10B
Ø Large 10~100B
Ø Mega 100B+

By Tuning

Ø Untuned (original)
Ø Foundational (tuned not

for instruction following)
Ø Instruction
Ø Chat
Ø …

By Enhancement

Ø Multi-modal
Ø Long-context
Ø Expanded token
Ø Domain expertise (e.g. Text2sql,

tool-using, planning, law,
medical, educational, …)

Ø …

Step 0 – LLM foundation and Ops

Some Known Limitations of LLM and Augmentation

Ø Stochastic

Ø Staled

Ø Lacking state tracking / memory

Ø Hallucinate

Ø Safety / privacy / integrity

Ø Very bulky to train / serve

Ø CoT, ToT
Ø Self-consistency, reflection
Ø Automatic prompt optimization
Ø Rails (fact-checking, Jailbreaking)
Ø …

Ø Generic prompt augmentation

Ø Retrieval from Vectorstore / DB
Ø Reranking / chunking …
Ø RAG-aware prompt augmentation
Ø …

Ø Add external knowledge (RAG)

Ø Use external tool
Ø Tool registration / API calls
Ø Tool-aware prompt augmentation
Ø …

Ø Equip with Agentic flows
Ø Reason and act, reasoning without observation
Ø Multi-agent control system
Ø …

More on this next

Final sections

Step 0 – LLM foundation and Ops

LLM Training Optimizations

Training traffic network

Nodes

Storage traffic network

Data storage
Checkpoint storage

… …

Resource
Scheduler

Recovery

Fail
detection

Workload
Scheduler

Ø Data
Ø Tensor
Ø Pipeline
Ø Expert
Ø Sequence

Ø Operator optimization
Ø Manual optimization
 (e.g. FlashAttn.)
Ø Auto optimization
 (e.g. kernel level)

Ø Mixed precision training

Ø Activation re-computation
Ø Redundancy reduction
Ø Defragmentation (partially, fully)
Ø Offloading

Ø CPU
Ø SSD

Ø Communication optimization (often the
bottleneck for large GPU cluster!)

Ø Scheduler with network topology awareness
Ø Fault tolerance

Ø Detection
Ø Recovery

Distributed training infra Parallelism Computation Optimization

Memory Reduction Management Optimization

Goal:

Ø Less memory consumption
Ø Faster computation
Ø Better hardware

utilization
Ø Higher success rate

Step 0 – LLM foundation and Ops

LLM Inference Optimizations

Goal:

Ø Lower computational cost
Ø Lower memory access cost
Ø Lower memory cost

Ø Better latency
Ø Better throughput
Ø Better storage

Ø Input compression
Ø Prompt pruning
Ø Context summary
Ø Context compression

Ø Output organization

Data-level optimization

Ø Distillation
Ø Quantization
Ø Pruning
Ø Sparsification
Ø Structural

optimization
Ø …

Model-level optimization

Ø Speculative decoding
Ø Parallel decoding
Ø Early exiting
Ø …

Algorithm-level optimization

System-level optimization

Memory management & caching Task scheduling

Ø Efficient KV cache
Ø Compression of KV

cache
Ø Prompt cache
Ø Semantic cache
Ø Infinite LLM
Ø …

Ø Request batching
Ø Disaggregated

inference
Ø Distributed system
Ø …

Kernel optimization

Ø Sampling
optimization

Ø Support variable
length

Ø Graph and operator
optimization

Ø …

Step 0 – LLM foundation and Ops

LLM Evaluation and Observability

Ø Observability: Metrics
Ø System metrics (e.g. throughput, memory usage, HW

utilization, service availability / uptime)
Ø Model performance metrics (e.g. accuracy, hallucination rate,

length-related metrics …)
Ø Latency metrics (e.g. time to first token, time between tokens,

tokens per sec, time per output token, total latency …)

Ø Observability: Logs
Ø Raw input / output
Ø Hydrated prompts
Ø Retrieved contexts
Ø Intermediate steps

Ø Observability: Traces
Ø Flow executions
Ø API calls
Ø … (see Langsmith!)

Ø Generic NL Evaluation
Ø Entropy, perplexity, …
Ø Functional correctness, relevancy, coherence
Ø Similarity with reference data (BLUE, ROGUE …)

Ø Domain Evaluation
Ø E.g. Recsys / IR task evaluation
Ø E.g. QnA task evaluation

Ø New Evaluation Methods
Ø LLM-as-a-judge
 (note: criteria ambiguity, inconsistency, cost …)
Ø Comparative evaluation
 (note: lack scalability, standardization, interpretation …)
Ø …

Ø Open-ended Generation Evaluation
Ø Insutruction-following capability
Ø Factual consistency, faithfulness, safety …

Step 0 – LLM foundation and Ops

Step 0 – LLM foundation and Ops

Putting Things Together (for now…)

Development Serving

Prompt
engineering

Meta-prompts

Prompt eval, tuning, testing
Design and publish prompt

Templating

Grounding
In-context learning

LLM pre-training / tuning

Learning from feedback
Continual learning

Offline evaluation

Non-GAI models

Algorithmic acceleration
AI system and architecture

optimization

Supplement / edge function

Models

Online monitoring / alarming

Delivery pipeline

Feedback loop

• LLM selection
• Adaptation to user task
• Database management
• External data integration
• GenAI evaluation
• Cost & latency optimization
• Observability

LLMOps

+

LLM Foundation

Get ready to build
your first LLM
solution in Recsys!

Overview

Feature
engineering

Retrieval and
ranking

DisplayUser-system
interaction

Data and
feedback
processing

Next
two
parts

• Textual feature
transformation

• NL interaction parsing
• Data augmentation
• Simulation
• Knowledge base integration

• Generative retrieval and
recommendation

• Next-item prediction
• Prompting as ranking
• Cold-start/few-shot problem
• Cross-domain recommendation
• Dense retriever
• Cross-encoder methods
• …

• Enhanced (multi-modal) representation
• Semantic ID
• Retrieval-augmented
• Context interpretation

Prompt engineering
+ fine tuning LLM
are often sufficient to
produce well-rounded
solutions for most of
these tasks!

Step 1 – Enhancing enhancing existing Recsys data and model

Productionizing Prompt Engineering Solutions

Prompt serialization

Ø What: seamless reading / writing
prompts and metadata to and
from file in production env.

Ø Why: ensure data consistency
across applications, projects,
environments, and CI/CD
pipelines in a structured fashion.

Meta Prompts“Auto” prompt optimization

Ø What: organizing and packaging
prompt template and relevant
(model) parameters.

Ø Why: versioning the definition and
configuration for prompt
engineering in a unified fashion for
integration and compatibility
purposes.

Ø What: build prompt abstractions
and automatically refining
prompts with gradient-guided or
LLM-assisted frameworks

Ø Why: manually tuning prompts for
black-box LLM is laborious and
more like an art then science, and
continuous optimization is
challenging.

Step 1 – Enhancing enhancing existing Recsys data and model

Wen, Yuxin, et al. "Hard prompts made easy: Gradient-
based discrete optimization for prompt tuning and

discovery."

Building and Serving LoRA LLM

Training Serving

Ø Flexible, stable, and effective parameter-
efficient LLM tuning

Ø Versatile serving
Ø Can serve multi-LoRA on single

GPU
Ø Can concurrently serving LoRA

adapters for single and multiple
requests

Why LoRA
Ø Be aware of the compute-memory tradeoff

with quantization
Ø Avoid “catastrophic forgetting” (overfitting

for fine-tuning) with learning rate scheduler
and controlling the tuning epochs / steps

Ø Picking the right modules to target (the more
the better for linear/proj. layers?)

Ø Balancing LoRA parameters r and alpha

Practical considerations

Step 1 – Enhancing enhancing existing Recsys data and model

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”
Sheng, Ying, et al. "S-lora: Serving thousands of concurrent lora adapters."

Case study 1: LLM as cold-start candidate generator

Scenario: how to retrieve real-time candidates for a member (with profile data) who started a session but
has very few historical interaction records?

Fine-tuning LLM

Ø What: collect in-house (user profile,
context) to item engagement data to
hydrate the NL training data, and tune
the foundation model with contrastive
loss in the Siamese setup.

Ø Remark: inject domain patterns and
knowledge into the foundation LLM for
optimal retrieval performance.

Prompt optimization“LLM2Vec”

Ø What: identify the optimal prompt
template (for both member and item)
that optimizes recall performance
before tuning the LLM with in-house
data.

Ø Remark: construct the best prompt
configurations before tuning the model
for maximum efficiency.

Ø What: converting long-context (which is
often a decoder LLM) into a bi-directional
foundation LLM (instruction-tuned).

Ø Remark: 1). Text-to-embeddings for the
profile and session contexts to facilitate
online KNN; 2). BERT models often don’t
possess the context length, open-world
knowledge, and instruction-follow ability
of the more recent LLMs.

Step 1 – Enhancing enhancing existing Recsys data and model

Wang, Liang, et al. "Improving text embeddings with large
language models."

Case study 2: Sematic ID

Scenario: how to more effectively encode large corpus of items in a semantically meaningful way so they can
be integrated into LLM and downstream models ?

Semantic ID in ranking model

Ø What: replace the atomic ID in ranking
model for improved memory efficiency
and generalization.

Ø Remark: semantic ID is a more
memory-efficient and generalizable
representation of large user / item
corpus. (WHY?)

Generative retrieval“Semantic ID”

Ø What

Ø Remark: treating semantic IDs as
tokens and apply NL techniques (e.g.
seq-to-seq modeling) such that the
generated tokens can be mapped to
items.

Ø What:

Ø Remark: quantizing item representations
with multi-level codebook:

Step 1 – Enhancing enhancing existing Recsys data and model

Sun, Weiwei, et al. "Learning to tokenize for generative retrieval."
Rajput, Shashank, et al. "Recommender systems with generative retrieval.”

Step 1 – Enhancing enhancing existing Recsys data and model

Case study 3: unifying semantic search and contextual recommendation

Scenario: given their growing similarity in the problem space and the capacity of LLM, can we re-define query
& context to facilitate unified solution for semantic search and contextual recommendation?

Multi-LoRA support

Semantic ID backbone“NL context”

Ø Remark : the unified semantic
representation is applicable to all tasks
under NL contexts.

Ø What: a broader definition that includes
explicit textual query, textualized
scenario context (inc. user / item
contexts).

Ø Remark: the goal is to cross-pollinating
the semantic modeling of explicit
(structured) query and personalized
modeling of implicit (unstructured)
contexts via LLM.

Ø Remark : enable a unified fine-tuning
and serving stack to capture the
specificity of each NL context in
retrieval phases.

Unified ranking stack

Note: in practice, the retrieval phase is always multi-source with such as term-based retrieval still playing critical roles.
 Now, with all the good items in the plate, how do we serve a “visual feast” to the users?

Recsys Display In a Nutshell

Ø Presenting raw recommendation is not enough:
Ø Mismatch between the representation of the suggestion versus users’ information need

Ø Need techniques for automatic generation of satisfactory explanation & reasoning & insights that are
intelligible (UNDERSTANDABLE) for users interacting with the system

Ø But, understanding is rarely the end goal
Ø Need to operationalize the effectiveness of explanation & reasoning & insights in terms of a specific notion

of usefulness or display goal (e.g. improved particular decision support, reduce the cost of a specific type
of error …)

Ø Explanation vs. transparency vs. justification
Ø Explanation don’t have to be transparent to the underlying algorithm
Ø A justification explains why a decision is a good one, without explaining how it was made

Ø Re-purposing raw contents (e.g. title rewrite) or generating new contents (e.g. homepage images in e-
commerce) are also optimizing specific notions of usefulness or display goal.

Ø Finally, keep in mind that the ”real estate” is limited especially on mobile Apps!

Step 2 – Enabling complex display objectives

Recsys Display In a Nutshell

Display Goal Definition Comment
Transparency Explain how the system works Establish visibility to the system status
Trust Increase user confidence Mitigating the effect of poor recommendation
Scrutability Allow user to tell when system is wrong Establish user control
Effectiveness Help user make good decisions Depend on the algorithm, also useful for introducing new domains

and help understanding full range of options

Efficiency Help user make faster decisions Usability principle: understand which suggestion is the best, how
quickly a task can be performed

Persuasiveness Convince user to try Attempt to influence user
Satisfaction Increase ease of use Aid the satisfaction with the reco process and recommended

suggestions without adding cognitive efforts

Stakeholder goals Coherence with system welfare

Step 2 – Enabling complex display objectives

Recsys Display In a Nutshell

• Three generic levels of explanation & reasoning in social and E-commerce Recsys:
1. Individual-user level

• Using raw data the platform has on the user (including history)

2. Contextualization level
• Establishing relations to anything that’s not in user / content raw data but affects user behavior, e.g.

situational feature, preference space, other users (neighbors), …

3. Self-actualization level
• Moving beyond information-finding and promote discovery and exploration to fulfill personal / societal

values and goals

4. And of course, the hybrid style

• What information to use? How to obtain them? How to use the obtained
information?
• Retrieval-augmented generation (RAG) is a powerful technique for these challenges.

Step 2 – Enabling complex display objectives

RAG Overview

Datastore Index

Query Input

Top
content LLM

encoder

+

transformation

prompt

Retrieval Generation

Re-purposing raw content

Explanation generation

Curating personalized
reasoning and insights

……Rerank, Chunk

Three key questions

Ø What to retrieve?
Ø How to retrieve?
Ø How to use & serve retrieved

contexts?

Practical Painpoints

Ø Information missing from retrieval;
Ø Useful information isn’t consolidated into context;
Ø Having useful information in the context, but end

up not specified / in wrong format / hallucinated in
the response;

Ø Response is too generic / incomplete;
Ø …

Step 2 – Enabling complex display objectives

Sources of Information

Ø Unstructured datastores and
structured knowledge bases /
graphs (most common);

Ø Real-time contexts;
Ø Various plugins for combining with

domain knowledge and results
Ø ...

Case Study 1 – RAG for personalized explanation and reasoning

Individual user level (insights in relation to
people background)

• Content-based explanation
Consider similarity between content
attributes / properties based on user
behaviors
Keywords, tags, topics…

• Case-based (influence) reasoning
Detailed contents are omitted and focus on
considering cases for comparison

• Knowledge / Utility reasoning
Reasons over knowledgebase can overlap
with the above styles for achieving certain
utilities

Contextualization level (insights in relation
to a context)

• Collaborative reasoning
Adding persuasion from neighbors
(assuming there’s already some
interests)

• Action reasoning
Extrapolating other explanation styles
into the action space

• Blind-spot explanation
Contextualization in relation to the
overall space

• …

Self-actualization level (insights in
relation to personal values / goals, the
reasoning can have more impact than the
recommendation itself)

• Goal-directing explanation
Suppose we have user labels for goal /
intent understanding

• User-controlled explanation
Writing actions controlled by user

• Broaden-the-horizon (educational)
reasoning

• Discover-the-unexplored
explanation

What to retrieve?

Step 2 – Enabling complex display objectives

Case Study 1 – RAG for personalized explanation and reasoning

Embedding-based retrieval

How to retrieve?

Generative retrieval

Content-based filtering

Collaborative filtering retrieval

Indexing and matching

And don’t forget to invest in…

Ø Encoder, query transformation
Ø Chunking / aggregation strategy
Ø VectorStore operations
Ø Adaptive & recursive retrieval
Ø Retrieval from external sources
Ø … (agentic RAG flows)

Ø Methods like TF-IDF and PMI-
based retrieval are effective
with reasonable performance
and good interpretability for
certain tasks

Ø The new retrieval paradigm,
supplementing existing
methods in long-context
scenarios

Ø Methods like BM25 are still the
key players for many types of
queries

Ø Good at capturing similarity
patterns from interaction data
for certain styles of explanation
/ reasoning

Ø Versatile with abundant
established solutions (including
LLM2Vec)

Ø Can take advantage of the
VectorStore advancements

Step 2 – Enabling complex display objectives

Case Study 1 – RAG for personalized explanation and reasoning

How to use retrieval depends on product design and how well the system is productionized.

Canary testings

Encoder & Index
upgrade

Query, ranking, and prompting
process iteration

Data store
improvement

• Data store construction
• Encoder optimization
• Index building

• Query/chunk process
• Rerank, consolidate
• Prompting LLM

Synthetic generation

App serving infra optimization
e.g. caching, pagination

AI hardware optimization
e.g. quantization, parallel

GAI algorithm
e.g. compressionOffline

Online

Development Evaluation Deployment Iteration

RAG as Curator Recsys User
feedback

Curated contents, reason, explanation … Curation-enhanced recommendations

Real-world
testings

Human-in-the-loop
offline assessment

Remark: as the display component of an online system, we want
the product design and RAG strategy to evolve and adapt quickly to
users’ needs. But how do we know what might work??

Step 2 – Enabling complex display objectives

Step 2 – Enabling complex display objectives

Case Study 2 – Display (creative) optimization with bandits

Scenario: how to effectively probe and adapt display strategies to individual user needs under
various (evolving) contexts?

Policy optimizationDefining the bandit problem

Ø Contextual information to use
Richer and richer with the new definition of
NL contexts.

Ø Policy structure
Linear structure is best established;
Neural nets are more suitable for the
unstructured NL contexts.

Ø E/E strategy
Epsilon greedy, Thompson sampling

Ø Policy learning and evaluation
Off-policy learning & eval with logged data

Ø What: (contextual) bandit is an
algorithmic framework that learns optimal
decisions by balancing exploration &
exploitation (while considering
contextual information for each decision).

Challenges in practice

Ø Define the right problem (RAG
problem space is very large with
a lot of configurations, the
problem space for copy
optimization is often simpler)

Ø Evolving problem space
Ø Delayed / indirect reward
Ø Non-stationary environment
Ø Runtime uncertainty
Ø Sensitivity of off-policy eval
Ø …

With good items in the plate and a visual feast, now, how to arrange a satisfactory interaction experience for the users?

Interactive (conversational) Recsys before the LLM Era

ØAsk for recommendation
Ø Input preference
Ø Inquire information
ØAnswer system problem
ØProvide feedback to recommendation
Ø Input critique
Ø…

ØRequest information
Ø Provide recommendation
ØAnswer question
Ø Provide explanation / reasoning
Ø Inform and acknowledgement

User Actions

System Actions

Intent
Understanding

(with conventional
MLSys)

Belief and state
tracking

(read / write <-> DB)

Generate response
(model-free template-

based generation)

.

.
.

.

.
What capabilities
are lacking in this

paradigm?

Step 3 – Facilitating interactive design and complex user tasks

Decision making

Ø Current paradigm: using
hard-coded routing logics so
the system itself cannot plan
and make decisions
adaptively under all contexts
and user actions.

MemorizationCognition

Ø Current paradigm: unable
to effectively process
complex dialogue states,
user history, and other
unstructured / semi-
structured data formats.

Ø Current paradigm: limited by
conventional ML sys’
capability to fulfill the intent
recognition tasks and
interpreting complex context.

Ø Fix: use LLM’s open-world,
generalization, and zero-shot
capability for fine-grained and
adaptive cognition tasks.

Acting

Ø Current paradigm: restricted
within the dialogue system,
mostly reactive rather than
proactive, and not interfacing
with external tools and
systems for read, write, and
more complex operations.

Ø Fix: introduce structure /
format conversions and on-
demand transformation with
LLM, and VectorStore as
short-term / long-term DB
solutions.

Ø Fix: combining hard-coded
logics with the preliminary
reasoning capability of LLM
for generic task planning and
adaptive routing & decision-
making.

Ø Fix: leverage LLM’s API
interfacing capability for tool
access, utilization, and more
complex system operations
like system and user-initiated
actions.

Interactive (conversational) Recsys before the LLM Era

Step 3 – Facilitating interactive design and complex user tasks

Integrating the New Capabilities

Reasoning/Self
-reflection loop

Identity Context History Memory Tools library

Planning &
Decision-making

Guardrail

Tool A Tool C

Tool B

Guardrail

Response

External
APIs

Recsys
APIs

Database
query

Internal
workflows

Data
model

User
Input

Cognition
…

Memory

Step
T

Step
T+1

Step
T+2

……

Acting

A monster control system:

Ø How many Agents (specialized entity that
perform a specific complex task) are
needed?

Ø How many Tools (atomic operation with well-
defined inputs and outputs)?

Ø How to orchestrate?
Ø Task -- decompose, execute, …
Ø Agent -- creation, communication…
Ø Resource -- memory, computation…
Ø Workflow – chaining, sequencing, ….

Ø How to evaluate & optimize online / offline?

Ø Need a holistic framework to enhance
capability, scalability, flexibility, resource
efficiency, fault tolerance.

Step 3 – Facilitating interactive design and complex user tasks

Multi-agent Framework

Design, manage, orchestrate, and coordinate multiple AI agents to work together on complex tasks.

Specialized sub-agents

Graph structured w. router

Standard communication

Organized tool registry

Distributed

Other important components
Ø Access control
Ø Conflict resolution
Ø Messaging system
Ø Memory / caching
Ø Observability
Ø Error handling …

Ø Agents communicate through
standardized API interfaces and
protocols

Ø Centralized control panel &
message queues

Ø Graph representation with nodes as
agents and edges as
communications, cycles enabled;

Ø Router (e.g. played by agent) as the
controller for main state transitions.

Ø Each agent operates
independently as a microservice

Ø Enhances flexibility and
scalability

Ø Enable unified creation,
discovery, configuration,
experimentation of tools.

Ø Each sub-agent is specialized
in a given task (e.g. with
dedicated large or small LLM as
backbone)

Step 3 – Facilitating interactive design and complex user tasks

Step 3 – Facilitating interactive design and complex user tasks

Case Study 1 -- Register Recsys as Tools

Scenario: after building the unified semantic & contextual Recsys, in the agentic framework, it
needs to be registered as a tool in order to be discovered, invoked, managed, and experimented.

Management

Ø What: managing the lifecycle
of Recsys including
description change, upgrade,
deprecation, etc.

InvocationDiscovery

Ø What: Agent can easily and
correctly call the Recsys
API and process the input &
output.

Ø What: the Recsys can be
matched to the appropriate
task by the Agent.

Ø How: provide and refresh
well-documented Tool
description and definitions to
the short-term and long-term
memories.

Experimentation

Ø What : A/B testing the impact
of a Recsys upgrade in the
agentic system.

Ø How: versioning the Tool and
simultaneously handling
referencing and rollout (inc.
hierarchical tools).

Ø How: maintain both the
control and treatment
variants of the Tool in the
discovery, invocation, and
management cycles.

Ø How: 1). adopt the
standardized communication
protocols, 2). building
versatile Tools (e.g. that can
take any NL context).

Step 3 – Facilitating interactive design and complex user tasks

Case Study 2 – Agent Call Patterns

User

Messaging Sys

Routing Agent

Messaging Sys

Agent 1 Agent 2

Tool #1
(Recsys A)

Tool #2
(Recsys B)

Memory

Tool #3
(EmailAPI)

Tool #4
(Scheduler)

Agent lifecycle
management

Tool lifecycle
management

 Roughly speaking…

User -> Msg. -> Routing Agent -> Msg. -> Agent 1 -> SyncCall(Tool#1, Tool#2)
 |
 |
User <- Msg. <- Routing Agent <- (Msg. , Memory) <- Agent1
 |
 |
 Agent 2 -> Memory -> AsyncCall(Tool#3, Tool#4)

Scenario:
Ø user msg: </>Email me with
Halloween decoration
recommendation and best deals
tonight. </>.

Ø Sys response: </> Scheduled. </>.

Remark:
Ø in reality, we don’t need to do such

traversals for all requests by leveraging (in-
memory) caching solutions

Ø other typical service optimizations include
load balancing, parallel / async.
processing, and message-queue-DB and
even API designs (e.g. gRPC vs. REST)

Beyond evaluating LLM: Human-in-the-loop for GenAI systems

We have talked about:
Ø Why to evaluate: assessment (reward and risk), selection, guard railing …
Ø What to evaluate: generic NL tasks, domain-specific tasks, generation evaluation …
Ø How to evaluate: benchmark, scoring models, LLM-as-a-judge (jury of LLM) ... Human-in-the-loop?

Annotation agreement
• Goal
• Criteria
• Tooling
• …

High
confidence

Human annotation service

Eval
report

Obtain confidence level
using in-house LLM

Filtering
ParsingGenAI system

Design cases and
refine data selection

Further examination for
low-confidence cases

Recruit
and train

Control
operation

Performance
management

Improve
eval process

Improve data
strategies

Resolve
conflicts

People

Task

Quality
assurance team

Legal team

Step 0 (‘cont) – Alignment and Reliable GenAI

AI-Human Alignment in a Nutshell

Data-driven approach Algorithmic approach HCI design

What is alignment?
-- Telling model / system what is safe, what is helpful, what is harmful, what is useless such
that they can always behave in the intended ways.

Prompt
improvement

High-quality
human feedback

Improve learning
objectives

Controlled
generation

Debasing

Calibration

Filtering

Inference-time
Scaling

Add Interpretability
& Reasoning

Augmentation Feedback
mechanism

Debasing
Prompt

improvement

Inference-time
Scaling

Controlled
generation

Filtering

Step 0 (‘cont) – Alignment and Reliable GenAI

Defend and Build Trusted GenRec System

Open-source
model

Public data

Custom
model

Proprietary
data

Agents
Response

Input

Alignment

Detox.

Access control

Retrieval-
augmented

Guardrail

Firewall
Reflecting
Critiquing

Multi-layer defense (the ideal setup)

Step 0 (‘cont) – Alignment and Reliable GenAI

Supply Dev Ops Serve

Challenges in reality:
Ø Many of these are resource-intensive operations (both offline and online)
Ø How to scale up and reduce redundant operations?
Ø How to effective handle the evolving threat landscape and governance …

Defend and Build Trusted GenRec System

Agent

LLM

Context

Memory

Plan

Reason

Tool

ØModel routing
ØBy expertise / performance /

trustworthiness / cost …
ØGuardrail

ØAccuracy / latency / …
ØFine-tuning

ØSecurity / reliability / fairness /
bias / ethic …

Blue-team defense
ØReliability

ØCorrectness / consistency /
robustness

ØSecurity
ØJailbreak / injection / theft …

ØSafety
Ø Privacy / toxicity / bias /

fairness / ethic …

Red-team defense

Offering
adaptive
solution

Offering
rigid
solution

Red and blue teaming (the ideal setup)

Step 0 (‘cont) – Alignment and Reliable GenAI

……

Challenges in reality:
Ø Similarly, many of these are resource-intensive operations (both offline and online)
Ø Lack of consensus on standardization for developing and testing many of the components
Ø Data scarcity issues (just like fraud detection)
Ø Aligning with the regulatory compliances …

Step 0 (‘cont) – Alignment and Reliable GenAI

Putting Things Together (finalized)

Development Serving

Prompt
engineering

Meta-prompts

Prompt eval, tuning, testing
Design and publish prompt

Templating

Grounding
In-context learning

Tool / API registry

Publishing and discovery
Skill creation and testing

Chain orchestration

Planning
Reasoning

Content indexing

API onboarding
DB onboarding

EBR (unstructured) query
DB & API query

Conversation management

LLM pre-training / tuning

Learning from feedback
Continual learning

Offline evaluation

Non-GAI models

Algorithmic acceleration
AI system and architecture

optimization

Supplement / edge function

Red teamingGAI response risk assessment
Access control and
moderation service

Human-in-the-loop
development

Tools

Content &
memory

Models

Responsible AI

Controlled generationData collection/annotation

Online monitoring / alarming

Delivery pipeline

Feedback loop

• LLM selection
• Adaptation to user task
• Database management
• API / Tool registry
• External data integration
• GenAI evaluation
• Cost & latency optimization
• Observability
• Human-in-the-loop
• Trust and reliable AI
• Chain orchestration
• Defense
• Human-AI alignment

LLM Foundation LLMOps

+

Get ready to build
your first Personalized
Assistant!

Step 0 (‘cont) – Alignment and Reliable GenAI

Case Study: Multi-modal GenAI in Recsys

Categorization

Harm and Risks

Model Building

Integration

Applications
Ø Contrastive:

Learn multi-modal representations
that are aligned in the embedding
space (e.g. CLIP);

Ø Generative:
Learn latent structure of multi-modal
data generation process (e.g. VAE,
Diffusion models).

Ø Improving recommendation (e.g. Multi-
modal representation learning and
retrieval)

Ø Improving display (e.g. image
refinement, description / review
generation)

Ø Improving interactivity (e.g. virtual try-
on, in-context visualization)

Ø Pretraining – contrastive or generative
pretraining of multi-modal encoder-
decoder model on large multi-dim corpus
with fusing techniques.

Ø Tuning -- often instruction-tuned and fine-
tuned (e.g. with LoRA and conditioning) for
domain alignment & controlled generation.

Ø As a tool:
e.g. taking (processed) textual input
and output the generated images.

Ø As a controller (Agent):
e.g. take prompt and multi-modal data
as input, and generate task
decomposition and call sub-agents.

Ø Misinformation (curation vs. creation)
Ø Manipulative danger (false persuasion)
Ø Safety concerns (especially when images

are involved)
Ø Societal bias
Ø Legal issues (e.g. infringement)
Ø More challenges in evaluation (lack of

data, difficult to audit …)

Defend and Trust
Ø Recap:

Ø Multi-layer defense on the (Input,
Response) layer, Ops layer, Dev
layer, and Supply layer

Ø Red teaming as the rigid solution
Ø Blue teaming as the adaptive

solution
Ø …

Landing multi-modal GenAI in Recsys covers all the elements discussed in this tutorial.

Some Interesting Open Problems

Ø GenRec assistant with persona

Ø Synthetic data generation and integration

Ø Renovated HCI design elements and concepts

• Online/offline evaluation, observability and monitoring
• Goal: developing a parallel process to measure and maintain the efficacy of the GenAI components in the system

• Challenges: brittle metrics, measuring generated responses at scale, ensuring reproducibility, longitudinal analysis, coming
up with appropriate monitoring and experimental designs for both user satisfaction and system efficiency

• Seamless multi-modality integration and serving
• Goal: effectively collect, process, understand the relationship, and produce coherent outputs that 1). Incorporate patterns

from various input types; 2). Enable natural and diverse human-computer interactions

• Challenges: obtaining high-quality data, data integration complexity, synchronizing and alignment, need more advanced
pre-training / tuning techniques, standardization and interpretability, serving scalability …

Some Critical Open Problems

• Effective in-house GAI serving stack
• Goal: hitting the optimal tradeoff between performance, cost, and latency with trust/safety control

• Challenges: managing fragmented tech stacks, catching up with new solution ideas, addressing data silos and safety
concerns, scaling applications with resource constraints …

• Acquiring high-quality human data at scale
• Goal: providing the fuel for all stages in the GAI development cycle (unlike Recsys which can leverage a wide range of user

feedback)
• Challenges: cost of human annotation, procedural complexity of training and workforce management, task and criteria

design …

Ø Consistent quality, reliability, and high success rate (especially for Agentic systems)

Ø All the unresolved privacy-related issues

Ø Real LLM4Planning and life-long learning capability

Final Remarks

• Can’t emphasize enough on data
• “Garbage in garbage out” is still a very real thing in the LLM era

• Viewpoints on “LLM for planning”
• Depends on whether the question has already been answered in the prompt?
• Remains largely an open field of study, be cautious in production …

• Challenges of CI/CD in this fast-evolving problem space
• Similar to what deep learning practitioners have experienced before 2015, troubled by tool migration and maintenance issues?

• On the growing computational capacity
• How much to count on “the bitter lesson”, “scaling law”, and “emerging capability” to set long-term goals and visions?

• Adopt a framework v.s. build your own
• No free lunch

• How AI teams and initiatives could be more effectively organized in the future?

• Reflecting on some ongoing Agent initiatives (feat. @Danqing Zhang)

Product 1 -- LiteMultiAgent (@Danqing Zhang)

● LiteMultiAgent
○ https://github.com/PathOnAI/LiteMultiAgent -- a hierarchical multi-agent

system
○ Highlights -- hierarchy of agents (where high-level agents use sub-agents as tools

through function calling) such that the execution of sub-agents is parallelized by
parallel function calling.

○ System components
■ Tool Registry: register custom functions, sub-agents as tools
■ AgentFactory: Creates agent instances, with different agent class and agent type
■ AgentManager: Manages agent interactions and hierarchies.

https://github.com/PathOnAI/LiteMultiAgent

● LiteWebAgent
■ https://github.com/PathOnAI/LiteWebAgent

■ Highlights
● decouple action generation and action grounding

○ action generation
○ action grounding

● flexible framework to incorporate different types of agents with strong baseline
○ planning agent that replans based on action execution
○ context-aware high-level planning
○ prompting agents

● first open-source framework that includes search agent for web browsing
○ implemented basic BFS/ DFS search agent
○ built solid framework and extended to the MCTS, LATS search agent for web browsing

● user interface, demo effect and browser

Product 2 -- LiteMultiAgent (@Danqing Zhang)

https://github.com/PathOnAI/LiteWebAgent

THANK YOU, Enjoy CIKM’24 and Boise :)

Q&A

We are always just one email / LinkedIn DM away :)
Presenter contact: daxu5180@gmail.com

Interested in Danqing’s startup projects? Contact: danqing.zhang.personal@gmail.com

Xu, Da, et al. "Survey for Landing Generative AI in Social and E-commerce Recsys--the Industry Perspectives. "
(this tutorial will be reflected in V2 of the survey paper releasing in Nov 2024)

mailto:daxu5180@gmail.com
mailto:danqing.zhang.personal@gmail.com

